1,402 research outputs found

    Flight-Effects on Predicted Fan Fly-By Noise

    Get PDF
    The impact on PNLT (Perceived Noise Level, Tone corrected) and Fly-by EPNL (Effective Perceived Noise Level) when forward motion reduces the noise generated by the bypass fan of an aircraft engine was studied. Calculated noise spectra for a typical subsonic tip speed fan designed for blade passage frequency (BPF) tone cutoff were translated in frequency by systematically varying the BPF from 0.5 to 8 kHz. Two cases of predicted flight-effects on fan source noises were considered: reduced BPF tone level of 8 db and reduced broadband noise level of about 2 db in addition to reduced tone level. The maximum reduction in PNLT of the noise as emitted from the fan occurred when the BPF was at 4 kHz where the reductions were 7.4 and 10.0 db. The maximum reduction in EPNL of the noise as received during a 500-foot altitude fly-by occurred when the BPF was at 2.5 kHz where the reductions were 5.0 and 7.8 db

    Technical considerations on using the large Nancay radio telescope for SETI

    Get PDF
    The Nancay decimetric Radio Telescope (NRT) in Nancay, France, is described, and its potential use for Search for Extraterrestrial Intelligence (SETI) observations is discussed. The conclusion reached is that the NRT is well suited for SETI observations because of its large collecting area, its large sky coverage, and its wideband frequency capability. However, a number of improvements are necessary in order to take full advantage of the system in carrying out an efficient SETI program. In particular, system sensitivity should be increased. This can be achieved through a series of improvements to the system, including lowering the ground pickup noise through the use of ground reflectors and more efficient feed design, and by using low-noise amplifier front ends

    Macroscopic study of time unsteady noise of an aircraft engine during static tests

    Get PDF
    Static tests of aircraft engines can exhibit greater than 10 db random unsteadiness of tone noise levels because flow disturbances that prevail near test site facilities are ingested. Presumably such changes are related to installation and test site features. Some properties of unsteady noise observed during tests of a Lycoming YF-102 turbofan engine are presented. Time and spatial variations in tone noise obtained from closely spaced far field and inlet duct microphones are displayed. Long to extremely short intermittent tone bursts are observed. Unsteadiness of the tone, its harmonics, and the broadband noise show little similarity. In the far field, identity of tone bursts is retained over a directivity angle of less than 10 deg. In the inlet duct, tone bursts appear to propagate axially but exhibit little circumferential similarity. They show only slight relationship to tone bursts observed in the far field. The results imply an intermittent generation of random mixtures of propagating duct modes

    Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel

    Get PDF
    One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack

    Back-action cancellation in interferometers by quantum locking

    Get PDF
    We show that back-action noise in interferometric measurements such as gravitational-waves detectors can be completely suppressed by a local control of mirrors motion. An optomechanical sensor with an optimized measurement strategy is used to monitor mirror displacements. A feedback loop then eliminates radiation-pressure effects without adding noise. This very efficient technique leads to an increased sensitivity for the interferometric measurement, which becomes only limited by phase noise. Back-action cancellation is furthermore insensitive to losses in the interferometer.Comment: 4 pages, 3 figures, RevTe

    Experimental Study of an Inclined Jet-In-Cross-Flow Interacting with a Vortex Generator

    Get PDF
    An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice
    corecore